Spent Fuel Pool Neutron Absorbing Material Degradation #### Emma Wong Nuclear Reactor Regulation/Division of Engineering Regulatory Information Conference Evolving Nuclear Fuel Pool Storage Criticality Regulations and Guidance March 13, 2013 #### Overview - · Safety Significance - · Material Types - Experience - Staff Observations - NRC Questions - · NRC Actions - NRC Path Forward - Timeline - Summary Picture: Spent Fuel Pool 2 ## **Safety Significance** - Prevent the occurrence of any inadvertent criticality events in the SFP - Neutron absorbing materials have a direct impact on safety - Unidentified and unmitigated degradation poses a criticality and safety concern - Challenges compliance with NRC subcriticality requirements: 10 CFR 50.68 and GDC 62 - NRC staff has identified this issue as potentially safety significant 3 ## **Material Types** - · Most popular at US plants - Aluminum Boron Carbide Cermet - BORAL® - Non-metal Matrix Composites - Boraflex - · Carborundum/Tetrabor® - Metal Matrix Composites - METAMIC® - New Metal Matrix Composites - Bortec® - Alcan Composite Pictures: BORAL® cross-section and Bortec® micrograph # **Experience** #### · Boraflex - Silica polymer matrix degradation - Gaps, cracks, shrinkage - INs: 87-43, 93-70, 95-38 - GL 96-04: Maintain 5% margin #### • BORAL® - Blistering & bulging - IN 83-29, IN 09-26 Pictures: In-service shrinkage and Boraflex removed from Spent Fuel Racks and Boral Blistering ## **Experience** - Carborundum - Stuck fuel assemblies - Significant amounts of degradation - IN 09-26 - · Monitoring programs - Ineffective implementation of corrective actions - Ineffective in identifying and mitigating degradation - IN 12-13 Picture: Carborundum microphotograph and example of Boral blister and bulge | U.S.NRC NRC Observations | | |--|--| | Surveillance program important to detect onset of degradation | | | Effectiveness of surveillance monitoring
programs impact management of the SFP | | | -Effective operating experience evaluation can | | | lead to early identification -Unknown degradation mechanisms and rates | | | could result in reduced subcriticality margins. | | | 7 | | | | | | | | | ALICANDO | | | US.NRC Protecting People and the Environment | | | Materials in each SFP and monitoring method Manitoring and mitigating the material. | | | Monitoring and mitigating the material degradation | | | Degree of accuracy of in-situ neutron
attenuation measurements | | | Surveillance intervals to monitor degradation | | | Material degradation affect on the criticality analysis | | | 8 | | | | | | | | | | | | US.NRC NRC Actions | | | IN 09-26, LR-ISG 2009-01, update to GALL
(NUREG 1801 Rev 2), and IN 12-13 | | | NRC evaluating material degradation | | | mechanisms, surveillance techniques, and predictive modeling | | | Literature knowledge baseConfirmatory research on the surveillance | | | methodology | | | Confirmatory research on the surveillance interval
adequacy | | | U.S.NRC UI.S.NRC Protecting People and the Experimental | Knowledge Base | | | | |---|---|---|--|--| | Current NRC state Commercial and de Lists materials in ea Periodically update Issued public Technical Letter Re Spreadsheet: ML12 Many gaps in inforr Material and config Use in the criticality | ecommissioned SFPs
ach SFP
d
eport: ML113550241
21090500
mation
uration in the SFP | | | | | Visual inspectionCoupon monitoring | he rack panel material
edures
g methodology | S | | | | Boraflex methodolo situ method) exami Technical Letter Re | eports (TLRs) published
ACKLIFE, and BADGER
12216A307
pol: ML12254A064
ertains to all neutron | | | | | US.NRC Surveillance Frequencies | | |--|--| | Material degradation mechanisms and rate | | | | | | | | | Frequency acceleration/deceleration | | | | | | Indicators of degradation between surveillances | | | | | | 13 | | | | | | | | | | | | U.S.NRC Criticality Aspects | | | Degradation of the material's potential affect on | | | the criticality analysis of record | | | - Loss of material - neutron absorbing capability | | | Deformation – blistering, bulging, pitting, warpingGaps, cracks, shrinkage, densification | | | – Voids | | | Structural integrityWear/mechanical damage | | | – wear/mechanical damage | | | | | | 14 | | | | | | | | | ALICNIC NO. 1. T. | | | U.S.NRC NRC Path Forward | | | Phenolic resins report | | | Cermet researchMetal matrix composite research | | | Borated stainless steel research | | | Coupon methodology | | | Potential Generic Communication Work in progress. | | | Work in progressMay be used to gather information | | | Determine if any additional NRC actions necessary | | | U.S.NRC UNISTRIB NOLLAR REPUBLISHED CONCERNING PROTECTING PROJECU and the Excitivemental | Timeline | | |--|------------------------|--| | Public Meeting on New
March 2013 | //Future Materials – | | | NEI Used Fuel Manage
2013 | ement Conference - May | | | • Phenolic Resin TLR – | Mid-2013 | | | Public Comment period
communication - Mid-2 | | | | | | | | | 16 | | | | | | | | | | | JUSNRC | C | | | ONTE PROGRAM REGISTER CONSISTENCY Protecting People and the Excircument | Summary | | | Gaps in information an | • | | | Additional dialogue wit | | | | Additional research un | • | | | Regulatory guidance, aOther generic commun | | | | garan garana samma | ,,,, | | | | | | | | | |